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Constructing Linear Families from
Parameter-Dependent Nonlinear Dynamics

Harry G. Kwatny and B.-C. Chang

Abstract— Generating families of linear models from nonlinear
parameter-dependent equations requires explicit analytical
characterization of the equilibrium surface. Doing so in terms of
the original system parameters is generally not possible. Introducing
an alternative parameterization, we propose an efficient method
for computing local linear parameter-dependent families. Although
local, these families can be constructed anywhere, specifically around
bifurcation points where other methods fail.

Index Terms— Linearization, nonlinear dynamics, parameter-
dependent families, symbolic computing.

I. INTRODUCTION

Control system designers are typically confronted with the require-
ment that a controller should provide satisfactory performance at
several operating conditions. Accordingly, the plant to be controlled
is often represented by a parameterized family of linear models
where different parameter values correspond to different equilibrium
points. These parameter-dependent linear models are frequently the
basis for gain-scheduled, adaptive, and robust control system design
[1]. In practice, however, the formulation of such models presents
fundamental obstacles. In this paper we provide one approach to
model construction when a nonlinear parameter dependent model is
available.

Consider a parameterized family of nonlinear control systems in
the form of

_x = f(x; u; �)

y =h(x; u; �) (1)

with x 2 Rn; u 2 Rm; y 2 Rm; � 2 Rk. If x0; u0; �0
corresponds to an equilibrium point, that is,f(x0; u0; �0) = 0 and
y0 = h(x0; u0; �0) = 0, the linear perturbation equations are

� _x =
@f(x0; u0; �0)

@x
�x +

@f(x0; u0; �0)

@u
�u

�y =
@h(x0; u0; �0)

@x
�x +

@h(x0; u0; �0)

@u
�u: (2)

Suppose, however, that we wish to construct a family of linear models
in which the parameter� is considered to be an independent variable.
Then, in principle, we need to solve the algebraic equilibrium
equations forx0(�); u0(�) in order to obtain

� _x =
@f(x0(�); u0(�); �)

@x
�x +

@f(x0(�); u0(�); �)

@u
�u

=A(�)�x+B(�)�u

�y =
@h(x0(�); u0(�); �)

@x
�x +

@h(x0(�); u0(�); �)

@u
�u

=C(�)�x+D(�)�u: (3)
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The need to characterize the dependence of equilibria on the
parameters is the essential and difficult aspect of the linearization
problem. The view that this can be accomplished by functions
x0(�); u0(�) is unsatisfactory. Assume thatf and h are smooth
functions and that equilibrium points are defined by the requirement

F (x; u; �) :=
f(x; u; �)
h(x; u; �)

= 0: (4)

This relation generically defines a smoothk-dimensional manifold in
Rn+m+k, called theequilibrium set, designated

ES = (x; u; �) 2 R
n+m+k jF (x; u; �) = 0 : (5)

An example of such a manifold is shown in Fig. 1, adapted from
[2]. Notice that the surface, although smooth, may have folds, and
consequently we cannot expect globally valid functionsx(�); u(�) to
define equilibria. Even local functions do not exist on neighborhoods
of points along the “folds” of the surface. Yet these are probably
the most interesting regions because these points correspond to static
bifurcations such as stall in aircraft [2], [3].

In Section II we introduce the main idea—the identification of a
new set of parameters that admit, in principle, a global definition
of the equilibrium surface. This leads to a computational procedure
that is described and illustrated with a simple example in Section III.
In Section IV we apply the method to the longitudinal dynamics of
an aircraft. The required symbolic calculations are performed using
Mathematica.

II. A N EW APPROACH

We propose an alternative to the approach of computing
x(�); u(�) for the characterization of equilibria. Consider any point
(x0; u0; �0) 2 ES. Our goal is to define a coordinate system onES

around(x0; u0; �0) and with the origin located at(x0; u0; �0). The
k new coordinatess will replace thek parameters� to provide a new
parametric representation of equilibrium points and the associated
linear dynamics in terms ofs instead of� (see Fig. 1). We will
find a mapping(x(s); u(s); �(s)): Rk ! Rn+m+k that defines the
equilibrium manifold.

Consider (1) and concatenate all of then+m+k variables to define
a single dependent variable�x = (x; u; �). Let F (x) := F (x; u; �)
andDxF its Jacobian. Suppose we have that rank[DxF (x)] = n+m

on the equilibrium setES = fx 2 Rn+m+kjF (x) = 0g. This
ensures thatES is a regular imbedded manifold of dimensionk
in Rn+m+k [4]. If x(s) satisfiesF (x(s)) = 0, it must be true that

DxF (x)
@x

@s
ds = 0

for arbitraryds at each pointx 2 ES. Now, we can always find a
basisf
1(x) � � � 
k(x)g for ker DxF . Consequently, we must have

@x(s)

@si
2 spanf
1(x) � � � 
k(x)g; i = 1; � � � ; k: (6)

The necessary conditions of (6) provide a means for computing the
transformation.

A. Example 1

Consider the one-parameter dynamical system_x = �x2 � �.
Equilibria are defined by the equationF (x; �) = x2 + � = 0.
Thus, we compute

DxF = [2x 1 ] ) 
(x; �) =
1

�2x
)

d

ds

x

�
=

1
�2x

:
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Fig. 1. A typical equilibrium manifold cannot be characterized by a function of the parameters�1; �2. In this illustration there are as many as three
equilibrium points corresponding to a particular parameter value. A new set of coordinates(s1; s2) will replace the original parameters(�1; �2).

Fig. 2. The equilibrium manifold is the parabola illustrated in thex–� space.
The equilibria on the upper branch are stable. Those on the lower branch are
unstable.

We can solve this last equation to obtain

x = s; � = �s2:

These equations parametrically define the equilibrium surface. The
perturbation dynamics are� _x = [�2x0]�x = [�2s]�x. Fig. 2
summarizes these results.

III. CONSTRUCTING SOLUTIONS

In the following paragraphs we describe and illustrate a general
approach to the construction of the transformationx(s).

A. Composition of Flows

We can construct a mappingx(s) that satisfies (6) by solving the
set of partial differential equations

@x

@si
= 
i(x); i = 1; � � � ; k: (7)

Recall that the flow defined by theith differential equation of (7) is
the function�s

i
(x) that satisfies

@�
s

i

@si
= 
i(�

s

i
); with �

0

i (x) = x: (8)

Now, we can state the following proposition.
Proposition: Suppose thatF : RN+k ! RN is a smooth

(C1) mapping with rank DxF = N on the set ES =
fx 2 RN+kjF (x) = 0g. Then ES is a smooth,k-dimensional,
regular manifold that is parametrically characterized by the mapping
x: Rk ! RN+k defined by the composition

x(s) = �
s

1 � �s2 � � � � � �
s

k
(x0) (9)

where�si (�); i = 1; � � � ; k denotes the flow corresponding to a vector
field 
i on ES, f
i; i = 1; � � � ; kg is a set of smooth vector fields
that spanker DxF; andx0 is any distinguished point ofES.

Proof: This is essentially the sufficiency part of the Frobenius
theorem as presented in [5, Sec. 1.4] and [4, pp. 39–41].

B. Example 2

Consider the two-parameter uncontrolled family

_x1
_x2

=
x2

�x31 � �1x1 � �0
: (10)
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Fig. 3. This figure illustrates the mapping defined in Example 2. The two-dimensional parameter space (s-space) generates the two-dimensional equilibrium
surface imbedded in the three-dimensional(x; �0; �1) space.

The equilibrium surface is defined byx2 = 0 and

F (x1; �0; �1) := x31 + �1x1 + �0 = 0:

Since x2 is trivially determined, the surface is defined by this
equation. Thus

DxF = [3x21 + �1 1 x1 ]

and a basis for kerDxF is


1(x1; �0; �1) =
1

�3x21 � �1
0

; 
2(x1; �0; �1) =
0

�x1
1

:

The equations to be solved are

@

@s1

x1
�0
�1

=
1

�3x21 � �1
0

;
@

@s2

x1
�0
�1

=
0

�x1
1

which generate the flows

�1(x1; �0; �1) =
s1 + x1

�s31 � 3s21x1 � 3s1x
2
1 � �1s1 + �0

�1

�2(x1; �0; �1) =
x1

�x1s2 + �0
�1 + s2

:

We will place the origin of the new coordinates at the point
(x1; �0; �1) = (0; 0; 0) 2 ES so that the desired mapping is

x(s1; s2) = �1(�2(0; 0; 0)) = �2(�1(0; 0; 0)) =
s1

�s31 � s1s2
s2

:

(11)

The mapping (11) is illustrated in Fig. 3.
It is easy to compute the perturbation dynamics via

A =
@f

@x
(x0; �)

(x ; �)!x(s)

:

Thus, we obtain

A =
0 1

�3x21; 0 � �1 0
=

0 1
�3s21 � s2 0

: (12)

We easily see from (12) that the unstable region is defined by
3s21 + s2 < 0. This region can be mapped onto the equilibrium

surface from which we find that the “wedge”-shaped region within
the folds contains the unstable equilibria.

Note that the Jacobian@�=@s must be singular at bifurcation points
of the equilibrium equations. Hence, in this example, we compute

@�

@s
=

�3s21 � s2 �s1
0 1

to obtain the condition

@�

@s
= �3s21 � s2 = 0:

As expected in this simple example, the (static) bifurcation points
correspond to the (divergence) stability boundary.

C. Flows via the Exponential Map

Consider the differential equation

dx

ds
= 
(x); x(0) = x0: (13)

We can write the solution trajectory as a Taylor series ins about
s = 0

x(s) = x0 + _x(0)s+
1

2!

��

x(0)s2 +
1

3!

���

x(0)s3 � � �

or

x(s) = x0 + 
(x0)s+
1

2!
L
 [
](x0)s

2 +
1

3!
L2

 [
](x0)s

3 + � � � :

So, provided the series converges, the flow can be expressed as
follows:

�s(x) = x+

1

k=0

1

(k + 1)!
Lk

 [
](x)s

k+1: (14)

Equation (14) provides the flow in the form of the “exponential map”
associated with the vector field
 [4], [6]. It is in a form that is easily
computable to any desired order ins.

D. Computer Implementation

We have implemented the required computations inMathematica,
building on the functions described in [7]. The calculations involve
four steps:

1) computing the JacobianDF ;
2) generating a smooth basis set for kerDF ;
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3) computing the flow functions based on the exponential map
(14);

4) forming the composition (9).

The only subtlety is Step 2), in which case care must be taken to
ensure that a smooth set of basis vectors is generated. TheMath-
ematica function NullSpace typically does not return a smooth
basis set. A smooth set, however, is desirable because it ensures that
the remaining computations proceed efficiently.

Because we use the exponential map to compute the flow functions,
our results are local. Even so, we are able to capture essential
nonlinear behavior as shown in the examples.

IV. L ONGITUDINAL FLIGHT DYNAMICS

As a more substantial example of the method described above, we
will apply it to the longitudinal dynamics of an aircraft. The model,
taken from [2], is

cos a �� sin � � sin � 0
sin a � cos � �� cos � 0
0 0 1 0
0 0 0 1

d

dt

�
�
�
q

=

� sin � + �w sin �+ �t sin �t + T �� cos �
cos � � �w cos �� �t cos �t �� sin �

q
V 2

0 l
�

gr2
f�w + ��w cos �� (1� �)�t cos �tg �

cV0
mgr2

q

where the states are:�—normalized speed;�—angle of attack;
�—pitch angle; andq—pitch rate. Other variables are:�t = � +
�e—tail angle of attack;�w; �t; �; �w—normalized aerodynamic
forces; T—normalized engine thrust;V0—the cruise velocity;
l�; r—characteristic lengths;�—the center of gravity location
parameter (� > 0 places the center of gravity behind its
nominal location at the wing center of pressure);m—mass; and
g—gravitational constant. For illustrative and computational purposes
we complete the model by specifying the following functions and
parameters:

�w = fw(�)��
2; �t = ft(�t)��

2

� = a+ b[fw(�)]
2 ��2; �w = �w(�)��

2

fw(�) = �� 2:05(�� 0:05)3 =0:05

ft(�t) = 0:1 (�t � 0:05)� 3(�t � 0:05)3 =00:05

�w(�) = 0; � = 1; a = b = 0:05

V 2

0 l
�=gr2 =300; cV0=mgr2 = 8:

Let 
 = �� � denote the flight path angle. We seek to investigate
the small perturbation behavior of the aircraft as it flies along a
linear flight path corresponding to speed�� and flight path angle

�. Consequently, the equilibrium point is defined by (15), as shown
at the bottom of the page. With
� = 0 and treating�; �� as
parameters, we can compute the transformation rules that define
the mapping(s1; s2)! (�0; �0; �0; q0; T0; �e0; �; �

�) and hence
the equilibrium surface. They are given in the Appendix. Fig. 4
illustrates one of the surfaces generated by the mapping. Once the

Fig. 4. This figure illustrates the surface that defines the relationship between
elevator deflection, speed, and center of gravity location. As before, the surface
is generated by first obtaining a parametric characterization of the equilibrium
manifold.

Fig. 5. This figure illustrates a contour plot of det[@�=@s]. The fold bifur-
cation points correspond to the level curve det[@�=@s] = 0. Points to the left
of this curve map to the lower sheet of the surface in Fig. 5, and points to
the right map to the upper sheet.

equilibrium surface is characterized it is a simple matter to compute
the A(s); B(s); C(s); and D(s) matrices. These are also given
in the Appendix where, for convenience of presentation, we have
expanded these matrices in(s1; s2) up to terms of order three.

As the parameters vary, the linear system properties change. The
fold bifurcation points are associated with a transmission zero located
at the origin (see [2]). This property of control systems is different
from that of dynamical systems (ordinary differential equations,

f(x; u; �) =

� sin � + �w sin �+ �t sin �t + T �� cos �
cos � � �w cos �� �t cos �t �� sin �

q
V 2

0 l
�

gr2
f�w + ��w cos �� (1� �)�t cos �tg �

cV0
mgr2

q

= 0

h(x; u; �) :=
� � ��

�� � � 
�
= 0 (15)
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without inputs and outputs). In the latter case the fold bifurcation
points correspond to a pole at the origin, as in Examples 1 and 2. Once
again, we can identify the bifurcation values for thes-parameters by
computing those points for which the Jacobian@�=@s is singular.
For the present example, this is illustrated in Fig. 5.

V. CONCLUSIONS

This paper has considered the construction of a parameter-
dependent linear family of perturbation dynamics for a control system
described by a parameter-dependent set of nonlinear state and output
equations. Such families are used in the design of gain-scheduled,
robust, and adaptive controllers. A method for constructing them
is proposed that is based on a globally valid reparameterization
of the equilibrium surface. Symbolic computing tools have been
implemented that enable the efficient assembly of local families.
Local families can be constructed around any equilibrium point,
including bifurcation points of the equilibrium equations. We have
presented some examples including the construction of a linear,
parameter-dependent family describing the longitudinal dynamics of
an aircraft.

VI. A PPENDIX

COMPUTATIONAL RESULTS FORSECTION IV

Transformation Rules:

kappa! �0:684403s13 + (1:72367s2� 1:05951)s12

+ 8:12991(s2� 0:250651)(s2� 0:0763583)s1

� 2:67297(s2� 0:282496)

� (s22 + 0:166192s2+ 0:123174)

V O ! 0:280373s13 + (0:375957� 1:59897s2)s12

+ (1:1085s2� 6:20337s22� 0:0556018)s1

� 24:0763(s2� 0:328683)

� (s22 + 0:0641432s2+ 0:0850141);

alpha0! 1:s2 + 0:2; theta0! 1:s2 + 0:2

q ! 0; T0! 1:(sin(1:s2+ 0:2)� 0:5(0:280373)s13

+ (0:375957� 1:59897s2)s12

+ (1:1085s2� 6:20337s22� 0:0556018)s1

� 24:0763(s2� 0:328683)

� (s22 + 0:0641432s2+ 0:0850141))2

� (�0:05(400:(1:s2� 2:05(1:s2+ 0:15)3 + 0:2)2 + 1:)

� cos(1:s2 + 0:2) + 20:(1:s2� 2:05(1:s2+ 0:15)3 + 0:2)

� sin(1:s2 + 0:2)

+ 2:(1:s1 + 1:s2� 3:(1:s1 + 1:s2 + 0:25)3 + 0:25)

� sin(1:s1 + 1:s2 + 0:3))

dele0! 1:s1 + 0:1g:

A, B, C, D Matrices:

A(s1; s2)

f0; 1; 0; 0g; f0; 8:; 0; 115:44 + 1507:s1� 972:08s12

� 521:228s13� 414:698s2� 10035:6s1s2

+ 18693:8s12s2+ 4613:63s22 + 79831:3s1s22

� 26665:8s23g

f�1:; 0; �0:507965+ 0:372692s1� 0:0413567s12

� 3:53916s13� 3:25592s2� 1:24722s1s2

� 8:59549s12s2� 0:19869s22� 3:18888s1s22

+ 20:569s23; �0:520796+ 0:267623s1� 4:13749s12

� 4:93026s13 + 2:78097s2� 7:69581s1s2

+ 10:0341s12s2+ 12:3308s22 + 30:1295s1s22

� 14:9802s23g

f0; 1:; �4:26585� 0:830071s1+ 4:76698s12

+ 5:94933s13� 18:1031s2+ 9:04239s1s2

+ 17:4469s12s2+ 22:9275s22 + 17:4608s1s22

+ 46:97s23; �6:34348+ 3:73129s1+ 2:19369s12

� 5:20817s13 + 27:7291s2� 7:14437s1s2

+ 6:69362s12s2� 45:6417s22 + 77:3689s1s22

+265:795s23g :

B(s1; s2)

f0; 0g; f0;�88:1598+ 1200:04s1

+ 1174:58s12 + 59:6655s13 + 1553:95s2

� 2588:05s1s2� 2091:08s12� 5328:94s22

+ 18061:s1s22 + 26256:4s23g

f0:980067� 0:198669s2� 0:490033s22

+ 0:0331116s23; 0:111244+ 0:16315s1

� 3:42676s12� 4:46184s13� 0:515347s2

� 5:30715s1s2+ 4:78682s12s2+ 1:2976s22

+ 15:8889s1s22� 7:7875s23g

f�0:295306� 0:0244064s1+ 0:163009s12

+ 0:150181s13� 2:13244s2+ 0:254494s1s2

+ 0:92401s12s2� 1:93552s22 + 1:44401s1s22

+ 5:43439s23; �0:279218+ 3:2301s1

+ 5:58259s12� 2:68087s13 + 3:6805s2

+ 3:68856s1s2� 13:4051s12s2

� 3:72915s22 + 7:89261s1s22

+25:149s23g

C(s1; s2)

ff0; 0; 1; 0g; f�1; 0; 0; 1gg

D(s1; s2)

ff0; 0g; f0; 0gg:
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